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F l. Introduction

Let f be a real-valued function defined on the state space of a

regenerative process X = {X(t) : t > 0} with regeneration times

0= To < Tl { es¢ . and suppose that

t
(1.1) r =1 | £(X(s))ds » a.s.
t to
as t + », The problem of estimating r via a simulation of X is called
the steady state simulation problem.

Relation (1.1) implies that r, is a strongly consistent point esti-

mator for r. To obtain confidence intervals for r, set (for k > 1)
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The regenerative structure of X guarantees that r = E(Yl(f)}/E{rl} and
that ((Yk(f). 1k) : k> 1} 1is a sequence of i.1.d. random vectors.
Standard arguments (see CRANE and IGLEHART (1975)) show that if

B(Y2(E) + ©2} <=, then

(1.2) /E(rt - r) = oN(0,1)

as t » o, where 02 - 62{21}/E(tl}. To use (1.2) for confidence inter-
vals, the regenerative cycle structure of X 1is exploited to obtain a
strongly consistent estimator vt for az.

These confidence intervals, while asymptotically correct, often have
poor small-sample behavior. For example, such confidence intervals often
tend to significantly undercover the parameter r. Several recent studies
have examined this problem. GLYNN (1982), in considering regenerative
confidence intervals on the time scale of regenerative cycles, obtained
asymptotic expansions for the coverage error which indicated that skewness/
kurtosis effects play a significant role in determining quality of the
confidence interval. To be more precise, the error, to a first approxima-
tion, is determined by the magnitude of quantities of the form E{ZT t?}
for m + n < 4. GLYNN and IGLEHART (1984) obtain expressions for the
asyaptotic covariance between r, and Ve and the variance of Vs these
expressions also involve mixed moments of the form E{ZT t?}- Conge-
quently, in studying small-sample behavior of regenerative confidence

intervals, it is of some interest to be able to calculate the exact values

of the mixed moments for some “test case” stochastic models. HORDIJK,
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IGLEHART, and SCHASSBERGER (1976) showed how to do this for m + n < 2,
when X 1is a discrete or continuous time Markov chain with countably many
states. In this note, we show how to calculate such quantities when X is
a semi-Markov process with countably many states; discrete and continuous

time Markov chain results follow as special cases.

2. Statement of the Recursive lMoment Formulas
Let X = {X(t) : t > 0} be an irreducible non-explosive regenerative
semi-Markov process on countable state space E. Thus, X(t) may be

represented as

X(e) = [ R IS <t<S),
k=0

where:

(1) R={R :n>0} is a discrete-time Markov chain on E with
transition matrix P = (pxy : x,y € E)

(11) 8 = {sn :n >0} 1is an increasing sequence of jump times with
So = 0 and differences @ = sn+l - Sn which are conditionally
independent r.v.'s given R.

The conditional distribution of @ is given by F(Rn,kn+l,dt) =
P(an ¢ dt|R}, where F(x,y,0) = 0 for all x,y ¢ E. Note that S, *°
a.s., since X 1is non-explosive by agsumption. Fix z ¢ E as the

regenerative state; let T(z) = inf{(t > 0 : X(t=) A z, X(t) = 2} and set
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T(2)
Y(u) = | u(x(t))de
0

where u : E + R 1is an arbitrary function. We wish to study mixed moments

of the form

3,0 = E (2" ww)

for x €¢E, 0{i<m,and 0< j<n, vhen g and h are fixed func-
tions, and m and n are non-negative integers. Throughout the paper we
shall use P‘{°) and Ex{°} to denote conditional probabilities and
expectations, given X(0) = Ro = x. Note that by choosing g(¢) = f(+) - r

and h(s) = 1, a,,(z) yields zz{z} r{}.

nij
To state our result, let a v b denote max(a,b) and set bmn(x) =
E_((X(Ig]) v D® (YR v D). Let G, and B be the matrix and

function, respectively, defined by

-
h
L]

Py b, (x,¥)

Gn(x.y) = o

<
L}
N

By(x) = ) w(x,y)p

yeE o4

wvhere uh(x.y) = f; " F(x,y,dt). Also, we shall identify real-valued

functions u(¢) on E with column vectors w, and shall use the notation

u O v to denote the vector with xth component (w O w)(x) = u(x)v(x). 7
Set .o(-) =1 and o™ = (woa" for n > 0. R
Let C denote the class of all @ x n wmatrix-valued functions, €, .ifi

on E. Then set -




L - -
wolece o I 1 js@it )t
k=0 &

=0

I Gppgopmgmom) g (] <=
yeE

and (6§ ¢, )(x) +0 as ke,

for all x ¢E, 0<1 <m and 0<J <n}.

(2.1) Theorem. If b (z) <=, then A = {'1_1 :0<1<m 0<j<n}

is the unique solution in Cnn to the system:

(2.2) ¢y = gowo Biag v L (D™ o w7t o ¢

),
(k,1)eB .

i) ‘4

where 0<i<m 0<j<n, and B, = {(k,2) : 0<k<i, 0 2<],

1)
k+% > 0}.

Set t = inf{n> 1 : R =2} and observe that

G:(x.y) = Px{Rk =y, t>k}.

Hence, Gko +0 as k »=®, It follows that if E has a finite number of

elements, Cm £ C, so that the '11

possible solutions to (2.2). Also, in the presence of a finite state

's are unique in the class of all

space, it is well known that (I - co)’l exists, so that (2.2) may be

re-written as
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(ke k' 144 -k=~ 1Sk 1

where 0 {1 <m 0<J<n, {+3>0, and Al = {(k,2) : 0<k <1,

J
0<2<3j, 0 <kt < i+j}. Also observe that ¢,, = 1. Note that the

system of equations (2.3) is recursive in i+j, in the sense that the

°1j'° may be solved in terms of the ckl's' where k+2 < i{+j. By
successively solving for the c‘u's with fixed k+% on each iteration, one
h eventually obtains €t

Formula (2.3) can be further simplified when X has special struc-

ture, Note that if X is a continuous time Markov chain, then

F(x,y,dt) = A(x) exp(-A(x)t)dt

for t > 0, so that

B (x,y) = at/Ax)" = n (x) .

We find that (2.3) can be re-written as

ey - I - co)"l{." ow o "y «‘

+ I DE T e o, 0 e}, 7

(k,l)(Aij Lo

where 0<1<m 0<j<n, and 1+ > O. e
e

wm

For discrete time Markov chains, pn 1 and cn ~ G, 80 (2.3)

takes the form
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- where 0<1<m 0<j<m and i+ > 0. ]
él_ Relation (2.4) expresses € in terms of G, € ,, where (k,%) ¢ Aij' _ki
t:z Equation (2.4) can be re-written, when g = h, so that the cij's are f;
r_ﬁ written directly in terms of the ckl's. If g=h, we write cij as .f
- iy and observe that (2.4) takes the form Lﬁ
]

T S R s " 4

(2.5) e =(XI-6¢) (g + kzl ()8 o6 el 1<1i<n. .

]

Recall also that from (2.2), € = l. We claim that the system (2.5) can

be re-written as

i
-1 k+l 1, 'k
(2.6) e, =~ (I-¢y {kzl -7 8

i
-~
A
-1

o ci-k}‘ 1 .
The proof is by induction. For n = |, the result is obvious, so suppose
(2.5) and (2.6) are equivalent systems for n = m. To check the (mtl)'st ;“

equation in the (m+l)'st system, observe that a solution of (2.5)

satisfies
g atrl , F ol mtl-l i;
(2.7) " (I-6) (g + I ' )s °©6, el . ~
i=] :\.1
By the inductive hypothesis, (2.6) shows that =
T
oy
S
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k+l 1, k
(2.8) 6 < - kZO (-1 (8 o e
for 1 < m. Substituting (2.8) into (2.7), we get that (I - €p)ens)
equals
g
. m 1
: ‘Il"‘l + 7 Z ( )(k)( 1)1 -k m+l . N
i=] k=0
5 m m+l-k
t - T g™k o ey T (kg ogymHicked
ﬁ k=0 % 4
n
% - T (g o o y(-)T2R
o K “
= Z ( )(‘l °Cc - )("'1)1"'1 ’

&) mH1-2

which is equivalent to the (mt+l)'st relation of (2.6) (the binomial
identity was used for the third equality). The steps being reversible,
this proves the claimed result. We remark that (2.6) yields the equations

of (4] for 1 =1, 2.

3. Proof of the Theorem

We proceed via a series of lemmas.

(3.1) Lemma. If bnn(z) { @, then the r.v.'s Y(g)1 Y(h-)J are integrable

under the probability distribution Px for 0<1<m 0<j<n, x¢E. ,{5;
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Proof. Note that

(xcjgh v Y (x(gn} v DI < e v D® (X(jp] v DO B |

so that b, .(2) <= for 0<i<m 0< j<n Since X is irreducible, -

]
it follows that Pz{T(y) < T(z)} > 0 for all y ¢ E, for otherwise the
regenerative property guarantees that ‘Pz{T(y) = o} = 1, which violates our
irreducibility assumption.

Then, by the strong Markov property applied at time T(y),

T(z) g, 22 j
e {(/ le(x(s)]ds v 1)7 ([ |n(X(s))]ds v 115 T(y) < M=)}
T(y) T(y) .

- bij(y) P{T(y) < T(z)|X(0) = z} < bij(z)

so that bij(y) <= for all y € E, which proves the result. []

(3.2) Proposition. If bmn(z) { =, then aij(x) exists and is finite for

0<1<m 0<j<n, x € E. Furthermore, A solves (2.2).

Proof. The first part follows immediately from Lemma 3.1. For the second :}?:
part, the integrability of Y(g)1 Y(h)J ensures that the following manipu- 3f3
lations of conditional ekpectations are valid: ‘:7
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8,0 = E (1@ 1(m)

- e (@' vwd; c = 1 +E (@' v <> 1

= gi(x) hj(x) u1+j(x.z) Prz

T(z) {
+a&mp%+£ g(X(t))de)" (n(Ry) a

1

T(z)
+ [

S

n(x(e)de)d; © > 1}
1

= gl W0 b (2 by,

1 - L ud
v 1} ) e {ar) ™ nrg)d ™t 78 ‘(é

k=0 2=0

T ) ]

o (f n(x(t))dt)™; © > 1}
S

1

« gt W b 2 oy,

L.

s 11 A wot™ ] e (x,¥) a,(y) :

Kke0 2=0 k"% yhz xy ‘i+j-k-2 L

& .32 -
-@owop dw+ T D™ o L
(k,l)clij T
O (Gpypypg By X)) J
"
the strong Markov property at time Sl was used to obtain the second last N

equality. 0

(3.3) Lemma. If bm(z) {®, then A ¢ Cm.

T(z)

g(x(e))de )k

1

1t
. R




Proof. For the absolute summability observe that di (x) =

j
e (¥(JgD’ ¥(|n])} satisties

dgy = Islt o nj o g,

+ ) (i)('}_)(]sli—]’t o Juji™to (Cipyic-g %ep)) -

(k,l)eBij
But d _.(x) < b, (x) <=, so | ]bk o lh]j-l ° (G ) is finit
13(¥) < byy , g 14i-k-2 Hen) 18 e,
proving the first part, since [aij] < ‘1j' For the second,
T(z) T(z)
G a0 =g J()  w) ([ xw >},
Sk Sk

which tends to zero by integrability of 'x'(lg])i Y(]h])j.

(3.4) Lemma. If bm(z) {», then A 1is the unique solution to (2.2) in

c .

an

Proof. Suppose that f{a _ : 0<r <k, 0<s <2} is unique in (C,

for k+i < i{+j, where 0 < i {(m, 0 < § { n. We shall prove uniqueness in
C L J; “bootstrapping” this result yields the lemma. Since the ats's are
unique in C,,, any solution to the (i,j) equation must satisfy

S § i,.] i-k j~-2
(3.5) €y "8 ©° o pi+j_+ (k’E)EAij(k)(l)(s on’ "o c1+j-k-1 a )
+ GO cij .

11
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o By the absolute summability, any two solutions €y ej'. j of (3.5) must
" -t - -t - gt E‘
" satisfy (cij cij) co(‘r,1J eij)’ Since c:(eij cij) >0 as S
:" - M 't’:..
k + », it follows that €y = €4 proving uniqueness in ( 13° 0 o
These above results prove all the assertions of the theorem. :
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